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Vorticity dynamics in an oscillatory flow over a 
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By P. BLONDEAUX A N D  G. VITTORI 
Hydraulic Institute, University of Genoa, Via Montallegro, 1 ,  16145 Genoa, Italy 
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In the present paper we determine the oscillatory flow generatcd by surface gravity 
waves near a sea bottom covered with large-amplitude ripples. The vorticity 
equation and Poisson equation for the stream function are solved by means of a 
numerical approach based on spectral methods and finite-difference approximations. 
In  order to test the numerical algorithm and in particular the numerical scheme used 
to generate vorticity along the ripple profile, we also perform an asymptotic analysis, 
which holds as the time t tends to  zero. The main features of the time development 
of vorticity are analysed and particular attention is paid to the dynamics of the 
large vortices generated by flow separation a t  the ripple crests and along the ripple 
profile. Some of the results obtained by Longuet-Higgins (1981) are recovered; in 
particular, the prcsent results show a vortex pair shed from the ripple crest every 
half-cycle. The determination of flow separation along the ripple profile induced by 
the pressure gradient and the inclusion of viscous effects allows us to obtain accurate 
quantitative results and detect some important phenomena never observed before. 

In  particular it is shown that : (i) Whenever a vortex structure moves towards the 
bottom, a secondary vortex is generated near the ripple profile, which interacts with 
the primary vortex and causes i t  to move away from the bottom. (ii) Depending on 
the values of the parameters, the time development of the free shear layer shed from 
the ripple crest may produce two or even more vortex structures. (iii) Occasionally 
vortices generated previously may coalesce with the free shear layer shed from the 
ripple crest, generating a unique vortex structure. 

1. Introduction 
The purely horizontal back-and-forth motion produced near a cohesionless bed by 

progressive gravity waves propagating in shallow water usually gives rise to nearly 
symmetrical bedforms commonly known as ripples. 

Even though i t  was recognized as early as Ayrton (1910) that  the formation of 
sand ripples is connected with the existence of vortices shed a t  the crests of the ripples 
in alternate directions every half-cycle, detailed quantitative knowledge of the 
vorticity dynamics is still lacking. There have been many experimental studies of the 
velocity distribution close to  a rippled bed in oscillatory flow (Nakato et al. 1977 ; Du 
Toit & Sleath 1981 ; Sato, Shimosaka & Watanabe 1987 ; Ikeda et al. 1989). However, 
results reported in the literature are mainly concerned with velocity measurements 
on a coarse grid close to the bed and do not provide an overall picture of the time 
development of the vorticity field. A detailed knowledge of the dynamics of the 
vortex structures generated by flow separation a t  the ripple crests is necessary in 
order to understand important phenomena which take place near the bottom and in 
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particular the mechanism through which sediment grains are lifted up and 
maintained in suspension. 

The experimental evidence (Nielsen 1979; Sunamura 1980) suggests that in a wave 
cycle two distinct mechanisms operate. The first is the trapping of sediment in the 
vortex structures which are generated by flow separation at  the ripple crests. When 
flow reverses and the vortex structures are no longer reinforced but simply convected 
by the local velocity, the second mechanism operates: sediment is carried in 
suspension far from the point where it was picked up and then is slowly released when 
vortices decay because of viscous effects. A model to transform these qualitative 
observations into quantitative results has not yet been formulated. 

I n  order to overcome the above difficulties Sleath (1973) and Sato, Mimura & 
Watanabe (1984) carried out numerical calculations of the oscillatory flow over a 
wavy bed. They assumed the flow to be two-dimensional and solved numerically the 
vorticity equation and Poisson equation for the stream function by a finite-difference 
scheme. The above numerical method fails when applied to conditions characterized 
by the relatively large values of the Reynolds number characteristic of the flow at the 
bottom of gravity waves. In fact a large number of grid points is necessary in order 
to describe both the irrotational part of the flow and the boundary layer adjacent to 
the bottom, and consequently an extremely large amount of CPU time would be 
required. 

Longuet-Higgins (1981) tried to  overcome the above difficulties by assuming that 
the flow can be represented by the superposition of an oscillatory irrotational 
component over the wavy wall and of the flow induced by a vortex sheet generated 
by flow separation a t  the ripple crest. The evolution of the vortex sheet is then 
computed through its representation in terms of a finite number of point vortices. 
However, as pointed out by Sleath (1984), the latter method presents some 
drawbacks. In fact, though Longuet-Higgins (1981) did incorporate some viscous 
effects, the discrete vortex method is essentially inviscid. In  other words it is 
assumed that viscous boundary layers remain thin and passive for all times except 
a t  singular geometrical points where they separate and generate a vortex sheet. 
Whence, if applied to  the oscillatory flow over a rippled bed, a discrete vortex 
method fails to provide quantitative results when the boundary-layer thickness is of 
the same order of magnitude as ripple height and when flow separation is induced 
along the flat ripple profile. 

A study of the viscous oscillatory flow over a rippled bed has also been performed 
by Smith & Stansby (1985) by means of a vortex-in-cell method (Christiansen 1973). 
In  this method the vorticity field is discretized into a set of vortices which are created 
on the ripple profile to satisfy the no-slip condition and convected in an inviscid 
calculation ; moreover, random walks are imposed to simulate the process of viscous 
diffusion. The above authors have recently successfully applied the vortex-in-cell 
method to compute the impulsively started flow around a circular cylinder (Smith & 
Stansby 1988). However, in the case of the oscillatory flow over a rippled bed, 
vortices are not convected far away from generation points, whence the authors were 
forced to introduce an empirical time decay of vorticity which makes the approach 
less rigorous. Moreover Smith & Stansby (1985) did not perform a systematic 
investigation of flow characteristics as functions of the various physical parameters 
of the problem. 

Numerical studies of the oscillatory flow over a wavy wall were also performed, 
among others, by Ralph (1986, 1988) and Sobey (1980, 1982, 1983). However, these 
works were mainly aimed a t  the study of the dynamics of physiological flows and 
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they focused attention only on internal flows with wall waviness characterized by a 
scale of the same order of magnitude as the characteristic viscous length. As a 
consequence results described in Ralph (1986, 1988) and Sobey (1980, 1982, 1983) 
cannot be used to obtain even qualitative informations on oscillatory flow at the 
bottom of sea waves where the constraints present in internal flows are absent and 
ripples are characterized by wavelengths much larger than the bottom boundary- 
layer thickness. 

I n  the present paper we determine the flow field close to a sea bottom covered with 
ripples. We attempt to overcome the difficulties described previously by employing 
a numerical approach based on spectral methods and finite-difference approxi- 
mations which allows us to obtain detailed results in a range of parameters of 
physical relevance by means of a limited amount of CPU time. 

In  particular the numerical approach is able to describe both the irrotational part 
of the flow and viscous boundary layers for relatively large values of the Reynolds 
number. Thus the dynamics of the vortices generated by flow separation a t  the ripple 
crests is analysed along with the dynamics of the vortex structures generated by flow 
separation along the ripple profile induced by pressure gradients. Some of the results 
obtained by Longuet-Higgins (1981) are thus recovered. In  particular the present 
results show a vortex pair shed from the ripple crest every half-cycle. The inclusion 
of viscous effects allows us to obtain accurate quantitative results and detect some 
new interesting phenomena : 

(i) Whenever a vortex structure moves towards the bottom, a cell of recirculating 
flow appears underneath the vortex. This recirculating cell is then ejected into the 
inviscid region leaving behind a free shear layer which rolls up into a strong 
secondary vortex which interacts with the primary vortex and causes i t  to move 
away from the bottom. This mechanism originates vortex pairs which were not 
detected previously. 

(ii) Depending on the values of the parameters, the evolution of the free shear 
layer originated by flow separation a t  the ripple crest may produce two or even more 
vortex structures which develop independently of each other. 

(iii) Occasionally vortices generated previously come into close contact with the 
free shear layer shed from the ripple crest and coalesce with the latter generating a 
unique vortex structure. 

These phenomena cause the flow field to assume rapidly a complex behaviour 
which requires suitable averages to be performed in order to gain a clear picture of 
the process. 

In the next section we formulate the problem. The numerical approach is described 
in $3 while results are presented in $5.  In  $4 an asymptotic analysis, which holds for 
small times, is presented and used as a check of the numerical model. 

2. Formulation of the problem 
Let us consider a two-dimensional gravity wave of small height H*,  length L* and 

period T* in shallow water of depth D* propagating over a wavy bottom. Let us 
denote by p and v water density and kinematic viscosity respectively. 

It is well established that the flow can be modelled as irrotational except within 
the unsteady boundary layers adjacent to the bottom and to the free surface. Since 
we are interested in the interaction between fluid and bottom, we focus our attention 
on the former layer and use linear wave theory to describe the motion outside this 
region. We assume the characteristic thickness of the bottom boundary layer to  be 
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much smaller than both the water depth and the length of the gravity wave. Flow 
in the bottom boundary layer can then be considered as caused by fluid oscillations 
which are only parametrically dependent on the longitudinal coordinate. We define 
a Cartesian orthogonal coordinate system (x*, y*) with the x*-axis lying on the 
bottom and parallel to the direction of wave propagation, the y*-axis directcd 
upward. The above assumptions allow us to assume the following form for the 
velocity vector (U*,  V*)  outside the bottom layer : 

(U*, V*)  = [ U,* sin (2;r)4 ~ 

where t* is time and U,* is the amplitude of the irrotational velocity oscillations 
evaluated a t  the bottom. 

When the bottom is flat and the flow is laminar, fluid motion is described by the 
well known Stokes' (1851) solution. The order of magnitude of the boundary-layer 
thickness is then provided by the quantity 

s* = (vT*/n)k 

Let us consider a wavy bottom profile y* = F(x*)  described by the following 
equations (Sleath 1984) : 

y* = ih* cos k*t* ; x* = t* -$h* sin k*t*, P a ,  b )  

where k* = 2n/l* is the wavenumber of the bottom profile, h* is height, and t* is a 
dummy variable. As observed in real ripples the bed profile (2a ,6)  exhibits crests 
sharper than troughs. A comparison between experimental profiles and (2) is 
performed in Sleath (1984) and shows a good agreement. 

Assuming the flow to be two-dimensional, the differential problem governing the 
flow field is posed by the vorticity equation along with the relationship between the 
stream function (9*) and the vorticity ( w * )  and boundary conditions which force no 
slip a t  the bottom and matching of the inner flow with the outer irrotational motion. 
Let us introduce the following dimensionless variables : 

Then the governing differential problem reads 
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where R, is the Reynolds number of the bottom boundary layer defined as  
R, = U , * ~ * / V .  

I n  o r d c ~  to  solve the differential system (4)-(7) it is useful to  introduce a new 
orthogorlal coordinate system (5. v ) ,  defined by the following relationships (Neath 
1973) : 

= x + $h e-kv sin k t ,  7 = y -4h ePkv cos kc  (8% 6) 

Substitution of (8) into (4)-(7) leads to  the following partial differential problem : 
w hivh map the bottom profile into the line 7 = 0. 

- 
at 

where J is the Jacobian of transformation 8 (a, 6) : 

J = I + ah2k2 e-2k'i - hk e-kq cos k t .  

(9) 

3. The numerical approach 
The problem formulated in $ 2  is solved numerically following a procedure which 

makes use of spectral methods and finite-difference approximations. 
First we consider the values assumed within a wavelength by the stream function 

l l . ( t ,q, t ) ,  the vorticity ~ ( 5 ,  'I, t )  as  well as the Jacobian J ( t , r )  on a regular grid along 
the t-direction : 

, j = l , 2  ,..., N .  

Jj(y) = J ( $ q ) ,  i 
Then the discrete Fourier coefficients are introduced (Orszag 1971) 

j= 1,2 ,..., N .  
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Making use of (14), (15) equations (9), (10) are reduced to the following form: 
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++N { ($) ; - n2k20, + , n = 0 , 1 ,  ..., N - 1 ,  (16) 
n 

where the operator N{ ; } is defined by 

m-0 

with P , = F ,  for O d n G 9 - 1 ,  

p, = Fn-N for $Vi- 1 < n < 2N- 1, 

P, = 0 otherwise. 

The operator N defined by (18) can be treated as an ordinary convolution sum by 
appending zeros to the arrays to convolve (Rinaldo & Giorgini 1984). The latter 
procedure is introduced in order to avoid alaising errors (Orszag 1971). 

The reduction of the system (9), (10) to the system (16), (17) transforms the 
mathematical problem into a time-dependent boundary-value problem in the 
variable 7 which is amenable to a classic computational approach. 

The solution starts with the establishment of initial conditions for the complex 
fields Y,, a, which are assumed to vanish. Then the computational cycle begins by 
implementation of finite-difference equations analogous to the partial differential 
equations for the discrete Fourier coefficients. A balance between computational 
costs and the attainment of accurate results suggested the use ofa  first-order forward 
scheme to approximate time derivatives and a second order scheme to approximate 
spatial derivatives (Roache 1972). A further variable i j  has been defined, 

and a constant spatial step A?i along the +direction has been used. The variable has 
been introduced in order to stretch the region near the bottom where the gradients 
of the dependent variables are larger. In  (19) b is a constant, the value of which has 
been appropriately chosen (see table 1). 

With these approximations, Q, inside the computational domain a t  a new time 
level is determined explicitly starting from the knowledge of Q, and Y, a t  the 
previous time level. Such updated values of Q, allow the solution of (17) for Y, to 
be obtained a t  the new time level with the following boundary conditions : 

‘y, = 0 at  7 = 0, (20 b )  

where rPin has been chosen equal to $ the dimensionless wavelength 1 of the ripple. 
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Run h 

1 6.7 
2 5.0 
3 2.3 
4 1.7 
5 2.5 
6 7.5 
7 2.5 
8 3.0 
9 2.8 

10 7.5 
11 1.9 
12 1.5 
13 5.0 
14 7.5 
15 10.0 
16 10.0 
17 3.07 
18 0.04 
19 0.05 
20 0.04 
21 4.71 
22 14.1 
23 23.6 

2a 5.0 
7a 2.5 

13a 5.0 

1 R* 
33.3 50 
33.3 50 
33.3 50 
33.3 50 
16.7 25 
50.0 75 
16.7 50 
20.0 50 
25.0 50 
50.0 50 
12.5 50 
10.0 50 
33.3 100 
50.0 100 
66.7 100 
66.7 150 
12.27 48.75 
17.95 0.1 

114.2 40 
41.88 0.1 

148.2 14.14 
148.2 14.14 
148.2 14.14 
33.3 50 
16.7 50 
33.3 100 

Tfi" 

22.22 
22.22 
22.22 
22.22 
11.11 
33.33 
11.11 
13.33 
16.67 
33.33 
11.11 
11.11 
22.22 
33.33 
44.45 
44.45 
11.11 
18.0 

114.0 
42.0 

148.0 
148.0 
148.0 
22.22 
11.11 
22.22 

b 

90.37 
90.37 
90.37 
6.63 

19.20 
18.76 
19.20 
16.83 
9.78 

18.76 
19.20 
19.20 
90.37 
18.76 
13.61 
13.61 
19.20 
8.45 
6.51 

5.76 
5.76 
5.76 

90.37 
19.20 
90.37 

14.0 

LV M 

128 128 
128 128 
128 128 
64 64 
64 64 

128 128 
64 64 
64 64 

128 64 
128 128 
64 64 
64 64 

128 128 
128 128 
128 128 
128 128 
64 64 
4 64 
4 128 
4 128 

16 128 
32 128 
32 128 

256 256 
128 128 
256 256 

4," 
1 on 
1on 
8n 
871 
4n 
4n 
8n 
411 
6n 
6n 
4n 
4n 
4n 
4n 
4n 
4n 
671 

30n 
30n 
30n 
30n 
30n 
30n 

2n 
211 
2n 

TABLE 1. Physical parameters and characteristics of the numerical grid. 

N M 

16 64 
32 64 
64 64 

128 64 
64 16 
64 32 
64 128 

CPU time per 
time step (9) 

2.6 x 
4.7 x 
9.8 x 

19.8 x lo-' 
2.4 x lo-' 
4.8 x lo-' 

19.6 x 

TABLE 2. CPU time per time step 

Preliminary computations performed with larger values of qfin show that this choice 
does not affect the results. 

Equations (17) leads to  a tridiagonal system for the values assumed by Y, on a 
regular grid along the f-direction. The latter system can be solved by standard 
methods. The last step in the computational cycle consists of the calculation of the 
new values of Q, on the boundaries of the domain. The latter step is accomplished 
by forcing a vanishing value of 52, a t  7 equal to qfin and computing 52, at  7 = 0 
according to the first-order scheme suggested by Thorn (1928) and discussed by 
Roache (1 972). 

In table 1 the physical parameters considered in the paper are shown along with 
the number of grid points in the c- and 7-directions denoted by N and M respectively, 
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the time step At and the constant b employed for the numerical integration. The 
value of b has been fixed in order to allocate a sufficient numbcr of grid points in the 
bottom boundary layer. 

All the computations have been carried out using the minisupcr computer FPS- 
M64/60 (peak velocity 38 MFLOPS). In table 2 the C"1'IJ time required for a time step 
is shown for different values of N and M .  

4. The initial flow field 
In order to test the numerical procedure described in the previous section and in 

particular the numerical scheme suggested by Thom (1928) to gcneratc vorticity 
along the ripple profile, in this section we compare the numerical results with the 
results obtained by an asymptotic analysis which holds a t  the initial stage of the 
motion. Further tests on the accuracy of the numerical approach will be described in 
thc following section. 

The method of the inner and outcr expansions is used to solvc thc problcm 
formulated in €33 for a short time after the start of the motion, even though here we 
assume that the velocity far from the wall for t larger than zero does not behave like 
sin t but rather like cost. This assumption simplifies the analysis and provides in any 
case a test for the numerical procedure. 

Since the flow is analysed for short time and some of the quantities introduced 
previously (namely 6*, T*) lose their importance. it is useful to introduce new 
dimensionless variables 

Let us denote by E a small time interval ( E  < 1) and assume that the Reynolds 
number Re, defined as Re = Ut l* /v .  is large enough for the quantity 01 = ( E  Re)-' to 
be of order one. 

Introducing a time variable 7 defined as t ' / e .  equations (9), (10) and boundary 
conditions ( 1  1 ) .  (12) become 

( 2 2 )  

Stream function and vorticity are expanded in a power series of E :  

$b' = $ : + E $ : + O ( E 2 ) ,  (23) 
w' = w: + ewy + O(e2). (24) 
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FIGITRE 1. Vorticity contours at t = 0.08 for h = 5.0, I = 33.33 and R, = 50. 

(a) Numerical results, (6) asymptotic results. 

Substituting (23), (24) into (19), (22) and making use of the initial condition of 
irrotationality, it is easy to see that the flow is irrotational to all orders in e .  It follows 
that 

t c a  

tai  = 0: $; = BO(7) y’+ C Ano(7)e-2nn~’ei2nn5‘, (25 )  

ta: = 0 :  $! = B1(7) y’+ C An1(7) e-2nnfei2nn5‘. 

n=--00 

+m 

(26) 
n--m 

Boundary condition (22) gives B,(T) = 1, B1(7) = 0 and suggests that A,, and A, ,  
vanish for n < 0. Since we cannot force (21), the existence of a region of non- 
uniformity ncar the ripple profile is inferred with thickness of order e .  

Let us stretch this region by introducing an inner variable Y such that 

Y = f / € .  (27) 

(28) 

(29) 

Stream function and vorticity are rescaled in the inner layer as follows: 

= e[$: + €$: + 0 ( € 2 ) ] ,  

wi = - [ W ; + € W ; + O ( € z ) ] .  
1 .  
e 
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L 

Numerical solution 

Asymptotic solution 

0.005 0.010 0.015 0.020 
t 

FIGURE 2. Vorticity time development a t  the ripple crest (R6 = 50, h = 5.0, I = 33.33). 

Substituting (27), (29) into (19) and (22) and equating like powers of E ,  at  the 
leading order we find a problem which is identical to that obtained for the 
impulsively started flow past a plane surface (the Rayleigh problem), except that 
the local first-order outer velocity on the ripple profile should be used instead of the 
constant impulse velocity. The solution is then 

where J , ( r )  is the leading-order term of the expansion of J ( r , q ' )  near the ripple 
profile : 

J,(E;') = 1 + ( ~ h ' ) ~ - 2 h ' x  cos 27~c' 

Applying the boundary conditions a t  the ripple profile and the asymptotic 
matching principle (Van Dyke 1975), the constants C',, Do, A, ,  can be easily 
obtained. 

Higher-order components of the inner solution are not determined as the present 
solution is mainly aimed at  providing an independent check for the numerical 
algorithm. 

Having an outer expansion valid in the outer region and an inncr expansion valid 
in the inner region, we can form a single composite expansion which is uniformly 
valid throughout the whole flow field (Van Dyke 1975). 

A comparison between the vorticity field obtained by the procedure just described 
and that obtained by the numerical approach is shown in figure 1 for particular 
values of the parameters. The qualitative and quantitative agreement is satisfactory 
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FIQURE 3. Vorticity time development at the ripple trough (R6 = 50, h = 5.0, I = 33.33). 

and supports the validity of the numerical approach, even though in the numerical 
calculations the vorticity field is not symmetric because of convective effects which 
are ignored at  the leading order in the asymptotic analysis. The values attained by 
the vorticity respectively a t  the ripple crest and trough as functions of time are 
shown in figures 2 and 3, which include both the asymptotic and the numerical results. 
The discrepancy due both to the approximations introduced in the numerical 
approach and to the terms ignored in the asymptotic analysis appears to be quite 
small. Hence it is possible to conclude that the agreement between the two solutions 
for small times is good, which suggests the suitability of the numerical scheme 
employed (Thom 1928) to generate vorticity a t  the solid boundary. Results similar 
to those reported in figures 1-3 can be obtained for different values of the 
parameters. 

5. Discussion of results 
Before discussing the case of ripples of finite amplitude i t  is instructive to consider 

ripples of infinitesimal amplitude. 
For bottom waviness characterized by a vanishing amplitude i t  is possible to  

linearize the problem discussed in $2 and obtain a solution in analytical form. The 
latter is presented in a paper by Lyne (197 1) for values of kR, much smaller or much 
larger than one and in Vittori (1989), Hara & Mei (1990), Blondeaux (1990) for kB, 
of order one. Vittori (1989) and Blondeaux (1990) assumed the amplitude of the 
bottom waviness to be much smaller than 6* while Hara & Mei (1990) developed their 
analysis assuming small values of the ripple steepness h/Z. 

The above analytical solutions show the flow to consist of two contributions: one 
periodic in time and the other time independent. The steady part consists of 
recirculating cells whose form, intensity and direction depend on the values of k and 
R,. A discussion of the flow field pattern for ripples of infinitesimal amplitude is 
outside the scope of the present paper ; the interested reader is referred to the papers 
mentioned above. However, the numerical solution described in $3  has been checked 
for small values of h against the analytical solutions in order to further ascertain the 
accuracy of the numerical approach. 

In  figure 4 (a-c) the contours of the steady part of the stream function obtained by 
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FIGURE 4. Contours of the steady part of the stream function in the oscillatory flow over a wavy 
wall (a )  present results h = 0.04. k = 0.35, R, = 0.1, A$ = 2.80 x ( b )  present results h = 0.05, 
k = 0.05,5, R, = 40, A$ = 1.37 x lW4, (c) present results h = 0.04, k = 0.15, R, = 0.1, 
A$ = 1.56 x ( e )  
Hara & Mei’s (1990) results h = 0.05, k = 0.055, R, = 40, A$ = 1.37 x (f) Blondeaux’s (1990) 
results h = 0.04, k = 0.15, R, = 0.1, A$ = 1.56 x 

( d )  Vittori’s (1989) results h = 0.04, k = 0.35, R, = 0.1, A$ = 2.80 x 
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X 

FIG(.RE 5(n-c).  For caption SPP facing page. 

means of the present approach are shown for values of the parameters which allow 
a comparison with some of the results described in Vittori (1989), Hara & Mei (1990) 
and Blondeaux (1990) and shown herein respectively in figure 4 ( d - f ) .  Taking into 
account that the contours of the numerical and analytical results are drawn for thc 
same values of the time-average stream function. it can be seen that the qualitative 
and quantitative agreement is good. 

However, it is worth pointing out that, considering larger values of kR,, the results 
by Hara & Mei (1990) deviate from the present results. while the latter still agree 
satisfactorily with those obtained on the basis of the independent analyses by Vittori 
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148 

FIGURE 5.  Contours of the steady par t  of the  stream function in the oscillatory flow over a wavy 
wall. Present results : k = 0.0424, R, = 14.14; ( a )  h = 4.7 1, A$ = 0.0018, ( b )  h = 14.14, A$ = 0.009, 
(c) h = 23.57, A$ = 0.045. Hara &, Mei’s (1990) results: k = 0.0424, R, = 14.14; (d )  h = 4.71, 
A$ = 0.0018, ( e )  h = 14.14, A$ = 0.009, (f) h = 23.57, A$ = 0.045. 

(1989) and Blondeaux (1990). For example for h = 0.05, k = 0.135 and R, = 40 the 
present results, in accordance with Vittori (1989) and Blondeaux’s (1990) findings, 
show that the maximum value of the steady part of the stream function is located 
at  a distance of approximately 4S* from the wall while the results by Hara & Mei 
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(1990) (see figure 6 b  of their paper) show that the maximum is located at a distance 
from the wall larger than 126". 

Let us now consider ripples of finite amplitude. Even though ripples under field 
conditions arc usually characterized by a wavelength 1* of the same order of 
magnitude as the amplitude of fluid displacement rJ$T*/2n, let us start by 
considering small values of the ratio U,* T*/2nl* = kR,/4n. In this limiting case, i.e. 
for vanishing values of kR,/4n, Hara &, Mei (1990) showed that an analytical solution 
of the problem formulated in $ 2  can be found by means of perturbation methods and 
it is thus possible to further ascertain the accuracy of the present numerical 
approach. It should be noted that in  order for the asymptotic analysis by Hara &, Mei 
(1990) to be valid R ,  should also be much larger than one. 

In figure 5 (u-c) the contours of the steady part of the stream function obtained by 
means of the present approach are shown for k = 0.0424, R, = 14.4 and h = 4.71,  
14.14,23.57 respectively. The values of k and h have been fixed in such a way that the 
present results can be compared with those presented by Hara & Mei (1990) in figure 
2(a-c) of their paper and shown herein in figure Fi(d-f). The value of R ,  has been 
chosen in accordance with a suggestion of Hara & Mei (1990) appearing in the caption 
to figure 4 of their paper. 

The qualitative agreement between the present numerical results and those 
obtained on the basis of the analytical approach is good. Indeed for h = 4.71 both 
solutions indicate the presence of two thin recirculating cells close to the bottom and 
two much larger and stronger cells far from it. Moreover, the present results, in 
accordance with Hara & Mei's (1990) findings, show that the recirculating cells near 
the bottom decrease in size and become stronger as h increases, while the large 
recirculating cells far from the bottom tend to move towards the ripple crests and to 
increase their intensity. However, taking into account that the contours of the 
numerical and analytical results are drawn for the same values of the time-average 
stream function, a quantitative discrepancy between the present results and those 
described by Hara & Mei (1990) can bc detected. The discrepancy can be partially 
explained by observing that the values of the parameters used in Hara & Mei's (1990) 
paper do not fulfil fully the conditions k 4 kR, 6 1 rcquircd for the validity of the 
analytical approach. 

The above comparisons suggest the congrucncc, the convergence and the accuracy 
of the numerical scheme, but only in the limiting cases h 6 1 and k < kR, < 1. 

In order to get general conclusions it would be necessary to compute each of the 
cases shown in table 1 with a variety of grid sizes. However. the extent of the 
parameter space has precluded such numerical experiments and instead only some 
typical cases have been run using a finer mesh (see table 1). The differences between 
the solutions computed by different grid sizes have always been found to be smaller 
than 1 'YO and at this stage such an accuracy has been judged as satisfactory. No plot 
of the vorticity field is shown for the runs characterized by a finer mesh since it is 
impossible to distinguish them from the runs characterized by a coarse mesh. 

Let us now proceed to discuss the physics of our results. An example of vorticity 
time development is shown in figure 6 for values of the pararnetcrs of physical 
relevance. The flow starts from rest. It appears that  clockwise (assumed positive) 
vorticity is generated along the bed profile and particularly near thc crest of the 
ripple during the first part of the cycle. Increasing t ,  the boundary layer thickens on 
the downstream side of the ripple till flow separates and vorticity of opposite sign is 
generated at the bottom. Then the rolling up of positive vorticity creates a well- 
defined vortex structure. The latter induces flow separation on the lee side of the 
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FIGURE 6. Vorticity contours: Aw = 0.15 (-, clockwise vorticity; - , counterclockwise 
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ripple and the generation of a free shear layer characterized by vorticity of opposite 
sign. In  the second half of the cycle, when the flow reverses, the main vortex 
structure is no longer reinforced but is simply convected away by the local velocity. 
The free shear layer originates a new vortex which couples with the previous one, 
forming a vortex pair which travels along the bed profile moving with its self-induced 
velocity. Then further counterclockwise vorticity is shed from the ripple crest and 
when the flow reverses its direction a negative vortex structure is present near the 
crest and the phenomenon repeats similarly. 
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The main features of the time development of vorticity have already been 
described by Longuet-Higgins (1981) by means of a discrete vortex method. 
Longuet-Higgins (1981) analysed the phenomenon for values of h*/l* and s*/l* close 
to ours but assuming an infinite value of R,. Longuet-Higgins’ (1981) results threw 
ncw light on the vorticity dynamics associated with an oscillatory flow over a rippled 
bed. However, the use of a discrete vortex method unavoidably presents some 
drawbacks. In fact any approach based on the description of the flow field as a sum 
of an irrotational component plus a rotational one induced by a finite number of 
point vortices is unable to detect some important aspects of the phenomenon strictly 
related to viscous effects. A comparison of the results presented in figure 6 with those 
described in Longuet-Higgins’ (1981) paper shows marked differences : 

(i) No significant counterclockwise vorticity is detectable during the first part of 
the cycle when a discrete vortex method is employed to describe the oscillatory flow 
over a rippled bed. The present results show that counterclockwise vorticity 
generated during the first part of the cycle affects the trajectory of the main vortex 
structure with clockwise circulation. Indeed negative vorticity separates from the 
ripple profile generating a free shear layer which strongly interacts with positive 
vorticity (see figure 6 d ) .  This aspect of the phenomenon is even more evident when 
larger values of R, are considered (see figure 7 b ) .  

(i i)  The vortex pair shed every half-cycle tends to leave the bottom when the 
vorticity dynamics is computed by a discrete vortex method. The present results on 
the contrary show that the vortex pair travels close to the bed (see figure 6 j )  and is 
dissipated near the bed. This difference can be mainly ascribed to the process of 
vorticity amalgamation usually employed to reduce the large amount of CPU time 
required by a discrete vortex method. Indeed vorticity amalgamation causes large 
unnatural velocity. 

(iii) The vortex with counterclockwise circulation, which formed a pair with the 
vortex structures shed during the first half of the cycle, coalesces with the free shear 
layer of negative vorticity originating from the ripple crest and a unique vortex 
structure of negative circulation is present near the crest a t  the end of the first cycle. 

(iv) Whenever a vortex structure approaches the bed, the present results show 
that a free shear layer of opposite vorticity is generated from the wall and the main 
vortex structure eventually rebounds from the bed, interacting with this free shear 
layer (see figures 6g and 7 d ) .  This phenomenon cannot be described using a discrete 
vortex method. 

It is worth pointing out that results similar to those described in figure 6 are also 
obtained for larger values of R, as is shown in figure 7 and consequently differences 
between the present results and those described in Longuet-Higgins (1981) cannot be 
associated only with the ‘small’ value of the Reynolds number used in figure 6 .  

Let us now focus our attention on point (iv). In  the oscillatory flow over a rippled 
bed, regions of concentrated vorticity in an otherwise irrotational flow are present. 
When one of these vortex structures moves towards the bottom, the boundary layer 
adjacent to the latter separates and a cell of recirculating flow appears underneath 
the vortex. This recirculating cell develops very rapidly and leaves the wall when the 
local thickness of the boundary layer grows dramatically. Then the recirculating cell 
is ejected into the inviscid region where it is convected away, leaving behind a free 
shear layer shed from the separation point a t  the wall. The latter rolls up into a 
strong eddy which interacts with the primary vortex and causes it to move away 
from the bottom (see figure 7 d ) .  When more vortex structures are present, a complex 
flow field is induced (see figure 15b). 
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A similar flow pattern can be observed in the interaction between the trailing 
vortices produced a t  the tip of an aircraft wing and the boundary layer formed at the 
ground during take-off or landing. This particular example is important since there 
is experimental (Harvey & Perry 1971), theoretical (Walker 1978) and numerical 
(Doligalski & Walker 1984) evidence to show how a vortex structure can induce 
boundary-layer separation from a flat surface, leading to the formation of a 
secondary vortex. As pointed out by Doligalski & Walker (1984), separation from a 
flat wall cannot be handled by means of a discrete vortex method where vortices are 
periodically introduced into the flow field only at singular geometrical points 
(Graham 1977) and the no-slip condition for the tangential velocity is not satisfied 
at solid walls, tacitly assuming that the boundary layers remain thin and passive a t  
all time. 

In  the phenomenon under consideration a discrete vortex method would predict 
that an isolated vortex would remain a t  an almost constant height over a ripple 
profile, being convected by the local irrotational velocity plus the velocity induced 
by its image vortex. 

Figure 8 shows the streamline pattern during a cycle for the same values of the 
parameters as in figure 6 .  Even though some vortex structures can be easily 
recognized from an inspection of the velocity field (compare figures 6c, 6 d ,  69 and 
6h  with figures 8c ,  8 d ,  89 and 8h) ,  it is almost impossible to recognize some of them 
(compare figures 6e and 6f with 8e and 8f ). Since there is experimental evidence 
that, when the bottom is made of cohesionless material, vortices carry in suspension 
a lot of sediment, it  is clear that an analysis of the velocity field is not sufficient to 
understand the mechanism through which sediment grains are lifted and maintained 
in suspension, and the establishment of the vorticity field is necessary. 

In  the oscillatory flow over a rippled bed, the vorticity time development is 
controlled by three dimensionless parameters which can be grouped in different 
ways. In  particular the following parameters are significant: (i) the ratio h*/l* 
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between ripple height and ripple Wavelength ; (ii) the ratio U,* T*/2nl* between the 
amplitude of fluid displacement s* and the ripple wavelength l * ;  (iii) the Reynolds 
number R,. It is worth pointing out that using the present notations the ratio s*/l* 
can be written as tkR,/4n. 

In the following we will attempt to describe the influence that variations of such 
parameters exert on the flow field, even though the range of variations of relevant 
parameters could not be explored fully. 

The results presented in figure 6 are for s*/l* = 0.75, h*/l* = 0.15 and 12, = 50 
which are possible values for active ripples under field conditions, even though 
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usually the Reynolds number of the bottom boundary layer takes larger values. 
Figures 9 and 10 show the vorticity field for the same values of s*/l* and R, but for 
different ripple heights. For brevity only two instants of the cycle are shown. On 
decreasing the value of h*/l*,  the intensity of the vortex structures shed from the 
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ripple crests decreases till only a boundary layer adjacent to the bottom can be 
recognized. The results shown in figures 9 and 10 seem to support the criterion 
proposed by Sleath (1984) that the boundary layer adjacent to the bottom separates 
when h*/l* exceeds the 'critical' value 0.1. However i t  should be pointed out that 
this behaviour of the vorticity field is present when s*/l* is equal to  0.75 and R, 
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assumes large values. For example flow separation is absent for h*/Z* larger than 0.1 
when R, tends to vanish. Thus Sleath’s (1984) criterion is not generally valid but it 
works for ripples under sea waves which usually are characterized by values of s*/l* 
close to 0.75 and by large values of R,. 

In figures 11 and 12 the vorticity field is shown for fixed values of h*/l* and R, but 
for different values of s*/l*. Since the ratio between the amplitude of fluid 
oscillations and the ripple wavelength is equal to kR,/4x, an increase of s*/l* for fixed 
values of h*/l* and R, implies an increase of S*/1* and of S*/h*. It can be concluded 
that an increase of s*/l* causes ripple dimensions to decrease with respect to the 
viscous characteristic length S*. Thus an increase of s*/l* implies larger viscous 
effects and a more rapid spread of vorticity. Indeed in figures 11 and 12 it can be seen 
that for large values of s*/l*, no well-defined vortex structure is detectable near the 
bed. 

When s*/Z* assumes values larger than those of figures 11 and 12 and tends to 
infinity, ripples behave like a bed roughness of small height and small length with 
respect to the boundary-layer thickness S*. The flow field differs from Stokes solution 
only within a region adjacent to the bottom, the thickness of which is of order h*. 
These results provide support to the statement that roughness does not affect the 
velocity field if the flow is laminar. 

The same qualitative behaviour can be observed in figure 13 where different values 
of R, are considered with fixed values of h*/l* and s*/1*. Indeed a decrease of R, 
implies larger viscous effects and less important convective effects. 

For ripple wavelength and height as large as S*, an attempt can be made to 
compare the present results with those obtained by Ralph (1986, 1988) and Sobey 
(1980, 1982, 1983), who studied the oscillatory flow in wavy channels characterized 
by wavelengths and heights of the wall waviness of the same order of magnitude as 
the viscous characteristic length. Because of the differences in the geometry studied 
by the authors mentioned above the comparison can only be qualitative. 
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In figure 14 the computed instantaneous streamlines of the oscillatory flow over a 
rippled bed are drawn for h = 3.07, 1 = 12.3 and R, = 48.75. These values of the 
parameters allow a qualitative comparison of present results with those presented by 
Sobey (1982) in figure 1 of his paper. As the external velocity increases, separation 
occurs a t  the lee side of the ripple. Subsequent increases in the velocity cause the 
appearance of another recirculating cell along the ripple profile. As flow decelerates, 
the recirculating cell grows and fills almost all the ripple trough. Then flow reverses 
and a new counter-rotating recirculating cell appears, produced by flow separation, 
thus repeating the process of vortex generation, growth, expansion and decay. 
Except for expected quantitative differences, the same time development of the flow 
was found by Sobey (1982). 
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Similar results have also been found by Ralph (1988) (see figure 3 of his paper) for 
slightly different values of the parameters. Further comparisons have not been 
carried out since, as pointed out in the introduction, the present paper is mainly 
devoted to the study of ripple profiles characterized by a lengthscale much larger 
than the thickness of the viscous boundary layer a t  the bottom of sea waves. 

Different vorticity fields are obtained for different values of the parameters. As 
previously pointed out the extent of the parameter space has precluded the 
computation and description of all the possible cases. In figure 15 the vorticity time 
development is shown for a part of the cycle when R, = 100, h*/l* = 0.15 and 
s*/l* = 1.5. Comparing figure 15(a) with figure 6(c),  which corresponds to  the 
same instant of the cycle but different values of the parameters, it  can be seen that 
for the larger values of 12, and s*/l*, the development of positive vorticity gives rise 
to  two well-defined vortex structures which have an independent time evolution (see 
figures 15b and 15c).  On the other hand, for the smaller values of R, and s*/l* only 
one vortex structure could be recognized. 

These findings along with the observation that the vorticity field becomes more 
complex as time progresses (compare figures 16a and 16b) seem to preclude a 
comprehensive presentation of the results. However, the problem is less dramatic 
when quantities averaged over a wavelength are considered. Indeed the present 
results can be used to compute quantities of applicative interest such as friction and 
dissipation factors denoted by f, and f, respectively. As previously mentioned, the 
presence of bottom waviness suggests that  the definitions off, and f, should be 
averaged over a ripple wavelength. Thus we write 
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where D is the strain rate tensor and subscript ‘max’ denotes the maximum value 
attained by the quantity in square brackets during a cycle. 

Figure 17 shows the behaviour of f , ( t )  for some typical cases, namely runs 3, 2, 7.  
In the first case before a transition period the flow becomes periodic and no 
uncertainty is present in defining the dissipation factor averaged over a cycle. In  
the latter two cases the flow does not reach a time-periodic behaviour even after 
many cycles. Moreover, results obtained so far seem to suggest that such periodic 
behaviour will never be attained by the flow. This non-periodic behaviour of a flow 
driven by a sinusoidal forcing has already been found by other authors in different 
geometries (see for example Bearman, Graham & Singh 1979). However, a sort of 
regime configuration is attained in this situation, as can be seen looking at  figure 18 
where the vorticity contours are plotted after 1,  2, 3, 5 cycles for run 2. Indeed even 
though the vorticity field is never the same, the main vortex structures detected at 
the end of the first cycle can always be identified and the qualitative description of 
the flow based on figure 6 does not change. 

Thus, it seems reasonable to assume that knowledge of the structure of the flow 
field in the first few cycles gives a reliable qualitative picture of vorticity dynamics 
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for the whole process. A deeper understanding of a possible underlying attractor in 
the solution of the time development for the flow field requires further work on single 
runs carried out for a large number of cycles. Such a study is in progress. 

The non-periodic flow behaviour detected in some runs is such that the average 
FLH 226 10 
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Run 
number t (0.27~) (2n,47~) (47~,67~) (BK, 87~) (8n, 1 0 ~ )  Mean 

2 0.082 0.117 0.136 0.110 0.125 0.1 14 
3 0.059 0.07 1 0.071 0.071 
7 0.075 0.087 0.086 0.087 ~ - 

TABLE 3. Values of the time-average dissipation factor f. over various ranges of t .  

- - 

over a cycle of the dissipation factor depends on time (see table 3 where the average 
off, over successive complete cycles is shown for run 2, 3 and 7). As suggested by 
Longuet-Higgins (1981), who found the same behaviour of when studying the 
oscillatory flow over a rippled bed by means of a discrete vortex method, it is possible 
to overcome this shortcoming by introducing, for non-periodic flow, a mean value of 
f, which is shown in the last column of table 3. 

In figure 19 the dissipation factor f, is plotted versus the ratio h*/l*,  for 
s*/l* = 0.75 and R, = 50 and 25. As previously discussed, when f, depends on time 
its mean value computed on the basis of the first cycles is considered. In the same 
plot a dotted line is shown which corresponds to  values of f, obtained analytically 
with an asymptotic analysis which holds for small values of h*/Z* (Vittori 1988). 
When h*/l* is smaller than 0.1, theoretical and numerical values off, agree well. For 
h*/l* larger than 0.1, the computed values of & arc larger than those obtained 
analytically because the former take into account flow separation. It is worth 
pointing out that  the numerical values off, fall within the range of the experimental 
results of Carstens, Nielson & Altinbilek (1969) and Lofquist (1980) ; however, a 
detailed quantitative comparison between the present results and experirncntal data 
has not been perforrncd since experiments arc characterized by relatively large 
values of the Reynolds number such that the flow in the bottom boundary layer is 
turbulent. In figure 20 f, is plotted versus s*/l* for h*/Z* = 0.15 and R, = 50. The 
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I 2 3 
s*/l* 

Fmum 20. Dissipation factor averaged over a cycle plotted versus s * / l *  for b*/Z* = 0.15 and 
R, = 50. 

computer costs have not allowed the computation of f ,  for different values of the 
Reynolds number and/or of the ratio h*/l*.  Howcver, the results obtained so far and 
shown in figure 20 seem to indicate, according to experimental findings, that the 
dissipation factor is largest for s*ll* approximately equal to 0.75. Incidentally, self- 
formed ripples arc characterized by a wavelength which is generally about two-thirds 
of the horizontal excursion of the water particles close to the bed, in other words by 
values of s*/l* approxi,nately equal to 0.75. 

Similar results are obtained for the friction factor f,. However, it is more 
interesting to analyse the spatial distribution of the bed shear strcss T and its time 
development. Indeed in the present analysis we have considered a fixed bottom 
profile, but when this assumption is dropped and a cohesionless bottom is 
considered, the bottom configuration is mainly controlled by the bed shear stress 
distribution. The spatial and temporal distribution of 7 is shown in figure 21 for 
fixed values of h*/l*, s*/l* and R,. Starting from rest, the bed shear stress is directed 
according to the outer irrotational flow (positive bed shear stress) and is larger at the 
ripple crests than a t  the ripple troughs. For t = in a region of bed shear stresses in 
the direction opposite to that of the outer irrotational flow (negative bed shear stress) 
appears along the lee side of the ripple. Since this region is related to flow separation 
and to the generation of negative vorticity along the bed profile, when the latter 
grows, negative stresses increase their intensity. The appearance of negative 
vorticity during the first part of the cycle is due to the presence of a large vortex 
structure of clockwise rotation which induces negative velocity near the bed, even 
though the outer irrotational flow is positive. When flow reverses and the main 
vortex structure is no longer strengthened, decaying due to  viscous effects, negative 
bed shear stresses decrease in intensity while positive bed shear stresses appear on 
the other side of the ripple. Similar results are obtained in the second half of the cycle. 
Of course this quantitative result changes as different values of the parameters are 
considered, even though the qualitative behaviour is unaltered if active vortex 
ripples under field conditions are considered (see for example figure 22). For brevity 

1 0  2 
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FIGURE 21. Bed shear stress time development. R, = 50, h*/l* = 0.15, s*/l* = 0.75. 
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FIGURE 22. Bed shear stress time development. R, = 100, h*/l* = 0.15, s*/l* = 0.75. 

we do not describe in detail the changes on the bed shear stress development 
produced by variations of the parameters. We only state that the present results 
could be used in future attempts to study the time development of vortex ripples 
when the bottom is made of cohesionless material. Hedegaard (1985) tackled the 
problem mentioned above and in particular focused her attention on small values of 
the bed shear stress, i.e. when bed load is supposed to give the main contribution to 
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the total load. However, even for small values of the bed shear stress, the vortex 
structures generated by flow separation at the ripple crests carry a lot of sediment 
in suspension. The lack of detailed information on the vorticity field and on the 
mechanism of sediment transport in suspension forced Hedegaard (1985) to introduce 
strong approximations. The present results can hopefully be used to study the 
dynamics of sediment grains in suspension and to gain new information on the 
suspended load over vortex ripples. Some preliminary work (Blondeaux & Vittori 
1990) suggests that starting from knowledge of the vorticity field a qualitative 
picture of the motion of sediment grains carried in suspension can be obtained. These 
qualitative results agree with the experimental observations by Nielsen (1979) and 
Sunamura (1980). 

The proposed model is still limited by the assumption of laminar flow. This 
assumption limits the analysis to values of the Reynolds number R, less than a 
critical value (Rb)c. Experimental (Merkly & Thomann 1975; Hino, Sawamoto & 
Takasu 1976, Tromans 1976) and theoretical (Blondeaux & Seminara 1979) studies 
seem to indicate that (R& ranges between 100 and 500. Thus even though the 
present analysis provides results of physical relevance, an extension of the numerical 
code to the turbulent case is desirable. Turbulence in an oscillatory boundary layer 
at  the bottom of gravity waves can be handled by means of a turbulence model and 
in this situation Saffman’s turbulence model seems particularly suitable as described 
in Blondeaux (1987). The numerical code can be modified in this respect and no great 
difficulties are expected. 

This work has been partially supported by the Italian Ministry of Education and 
partially by the National Research Council (CNR) under grant ‘Piano finalizzato : 
Sistemi informatici e calcolo parallel0 - Sottoprogetto Calcolo scientific0 per grandi 
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